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Efficient and Accurate Correction of Beam
Hardening Artifacts

Kyle Champley and Timo Bremer

Abstract—The polychromatic energy-spectra of X-ray tubes
used in Computed Tomography (CT) produce so-called beam
hardening artifacts in the reconstructed images. These artifacts
diminish the quantitative accuracy and qualitative appearance of
the CT images. Modern model-based beam hardening correction
(BHC) algorithms are effective at removing these artifacts,
but are extremely computationally expensive. In this paper we
develop a new model-based BHC algorithm that is both effective
and computationally efficient. The method consists of two nested
loops. The outer loop estimates the energy dependence on the
measured ray-sums of the attenuation map and the inner loop
determines the sinogram data that fits the energy-weighted
forward model of CT data.

I. INTRODUCTION

X-ray Computed Tomography (CT) allows one to non-
destructively obtain images of the structural makeup of an
object of interest. A number of physical effects in the measured
data may diminish the qualitative and quantitative accuracy of
the image. This paper deals with the correction of so-called
beam-hardening artifacts.

The attenuation of a monochromatic X-ray beam through a
uniform object is given by − log(I/I0) = µl, where I0 and
I are the intensity of the beam before and after the beam
travels through the object, µ is the attenuation coefficient (at
the given energy of the beam), and l is the path-length through
the object.

The relationship between the attenuation of a polychro-
matic X-ray beam through an object and the attenuation map
is highly nonlinear. The rate of absorption and scattering
of X-rays depends on the X-ray energy and the material
composition. Lower energy X-rays are absorbed at a higher
rate which causes the beam to harden. The violation of the
assumed linear relationship between the measurements and the
object attenuation map by the polychromatic X-ray CT spectra
introduces beam hardening artifacts into the reconstructed CT
images.

Methods for beam hardening correction (BHC) have been
developed over the past several decades[1], [2], [3], [4], [5],
[6], [7], [8] to mitigate beam hardening artifacts. Earlier
approaches [1], [2], [3], [4] may be categorized as post-
reconstruction techniques. These methods are computationally
efficient, but not as accurate as state-of-theart model based
iterative methods [5], [6], [8] which are computationally
intensive.

In this paper we introduce a new computationally-efficient
and quantitatively accurate model-based BHC algorithm. We
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test our algorithm with simulated and measured data and
compare its performance with a BHC algorithm developed by
Fuchs [3].

II. X-RAY CT MODEL

Let γ be the X-ray energy (keV), d(γ) be the energy-
dependent detector response, and s(γ, L) be the source spectra
that depends on a particular ray-path, L. Assuming that no
scattered radiation is measured by the detectors, the expecta-
tion of a radiograph can be modeled by

I(L) :=

∫
d(γ)s(γ, L)e−

∫
L
µ(γ,x) dx dγ,

where µ(γ, x) cm−1 is the energy-dependent attenuation map
of the object being scanned and x ∈ R3 is a location in space.
Define the air scan as the radiograph with the object removed
from the field of view. Then its expectation is given by

I0(L) :=

∫
d(γ)s(γ, L) dγ.

The normalized radiograph is given by

I(L)

I0(L)
=

∫
m̂(γ, L)e−

∫
L
µ(γ,x) dx dγ,

m̂(γ, L) :=
d(γ)s(γ, L)∫
d(γ)s(γ, L) dγ

.

The attenuation map can be reconstructed (with beam-
hardening artifacts) from a sinogram which is given by

p(L) := − log

(
I(L)

I0(L)

)
≈ Pµ(γ, L) (1)

Pµ(γ, L) :=

∫
L

µ(γ, x) dx, (2)

where P is the forward projection operator and γ =∫
γm̂(γ) dγ is the mean effective energy of the system.

Equation (2) is only exact for m̂(γ, L) = δ(γ − γ), where
δ(·) is the dirac delta functional.

A. Energy-Dependent Attenuation of Compounds

The attenuation coefficient of a material can be broken up in
components of electron density (electrons mol / cm3) and cross
section (cm2 mol−1/electrons). The absorption and scattering
cross section of a material depends on its effective atomic
number (also called effective-Z), i.e.,

µ(γ, x) = σ(γ, Z(x))ρ(x),



where σ is the cross section, ρ is the density, and Z(x)
is the spatially-variant effective-Z map. The photon energy-
dependent absorption and scattering cross section for the
elements can be found in tables [9]. We shall denote these
quantities by σ(γ, Z) where Z ∈ Z is the atomic number
of the element. The cross sections of the elements can be
extended to non-integer Z by linear interpolation.

These energy-dependent attenuation coefficients can be ap-
proximated by the Compton-Photoelectric basis given by

µ(γ, x) ≈ bc(γ)fc(x) + bp(γ)fp(x)
bc(γ) := 2πr20NA

×
{
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
log(1 + 2α)

]
+

1

2α
log(1 + 2α)− 1 + 3α

(1 + 2α)2

}
mol−1cm2

electron
bp(γ) := γ−3,

where r0 is the classical electron radius and NA is Avogadro’s
number.

Now consider the attenuation maps f1 and f2 at the two
energies γ1 and γ2. Then there exists fp and fc such that

f1 = bc(γ1)fc + bp(γ1)fp

f2 = bc(γ2)fc + bp(γ2)fp

and conversely

fc = b1(γ1)f1 + b2(γ1)f2

fp = b1(γ2)f1 + b2(γ2)f2,

where

b1(γ) :=
bp(γ2)bc(γ)− bc(γ2)bp(γ)
bp(γ2)bc(γ1)− bc(γ2)bp(γ1)

(3)

b2(γ) :=
bc(γ1)bp(γ)− bp(γ1)bc(γ)
bc(γ1)bp(γ2)− bp(γ1)bc(γ2)

(4)

and thus

µ(γ, x) ≈ b1(γ)f1(x) + b2(γ)f2(x).

III. DEVELOPMENT OF BEAM HARDENING CORRECTION
ALGORITHM

We wish to determine p := Pf , where f is the attenuation
map at energy γ. Assume that the energy-dependent attenua-
tion map, µ, can be broken up into a finite number of material
components by

µ(γ, x) =

M∑
i=1

σ̂i(γ)ai(x),

where σ̂i(γ) = σ(γ,Zi)
σ(γ,Zi)

is the normalized cross section (unit
less) of the materials with effective-Z of Zi and ai(x) are
spatially-dependent attenuation maps (at γ) for each material.
Note that this model allows the attenuation map to fluctuate
(by variable density) for a given material. The choice of
{Zi}Mi=1 should be such that different materials can be rea-
sonably determined by either a priori knowledge of the object

being scanned or by applying a set of parametric transfer
functions to f such as ai(x) := Ti(f)(x), where

Ti(f)(x) :=



f(x), f(x) < µ1,
µi−f(x)
µi−µi−1

µi−1, µi−1 ≤ f(x) < µi,
f(x)−µi

µi+1−µi
µi, µi ≤ f(x) < µi+1,

f(x), µM < f(x),
0, otherwise.

(5)

Note that f =
∑
i ai and µi are the attenuation coefficients of

our basis elements at the mean effective energy. Other transfer
functions may be used, but are not discussed in this paper.

Using the above we can separate the spectra effects of
Pµ(γ, L) from its value at the mean energy by

Pµ(γ, L) =
Pµ(γ, L)

Pµ(γ, L)
Pµ(γ, L)

=

∑M
i=1 σ̂i(γ)Pai(L)∑M
i=1 σ̂i(γ)Pai(L)

Pf(L)

=

M∑
i=1

σ̂i(γ)
Pai(L)∑M
j=1 Paj(L)

Pf(L)

=: c(γ, L)p(L). (6)

This method requires M forward projections to estimate
c(γ, L). We now show how one can estimate c(γ, L) with only
one forward projection using equations (3, 4). Now consider
the two energies γ and γpeak, where γpeak is the peak energy
of the spectra. Then using equations (3, 4), we may define
basis functions bmean(γ) and bpeak(γ) such that

µ(γ, x) ≈ bmean(γ)f(x) + bpeak(γ)fpeak(x).

Then using a similar argument as above we find

Pµ(γ, L) ≈
[
bmean(γ) + bpeak(γ)

Pfpeak(L)

Pf(L)

]
Pf(L)

=: c(γ, L)Pf(L), (7)

where fpeak(x) :=
∑M
i=1 σ̂i(γpeak)ai(x).

IV. ITERATIVE ESTIMATION OF MODEL PARAMETERS

In this section we describe how to iteratively determine the
beam hardening model parameters, c(γ, L) and in turn the
beam hardening corrected sonogram data, p(L).

Suppose that the effective atomic number of the material
with the lowest effective atomic number in the model is
given by Z1. For example, in medical CT Z1 = 7.42, the
effective atomic number of water. Also let A be the filtered
backprojection (FBP) operator. Then our algorithm is given by

1) Initialize n = 0 and p0,0 := − log
(
I
I0

)
2) Set cn(γ):

cn(γ) :=

{
σ̂1(γ), n = 0,

bmean(γ) + bpeak(γ)
Pfn,peak

pn,0
, n ≥ 1

fn := Apn,0, n ≥ 1

fn,peak :=

M∑
i=1

σ̂i(γpeak)Ti(fn), n ≥ 1



3) Use Newton’s Method to find sinogram data that
matches polychromatic model (for k = 0, 1, . . . ,K−1):

pn,k+1 := pn,k +

∫
m̂(γ)e−pn,kcn(γ) dγ∫

cn(γ)m̂(γ)e−pn,kcn(γ) dγ

×
[
log

(∫
m̂(γ)e−pn,kcn(γ) dγ

)
+ p0,0

]
4) Update beam corrected sinogram: pn+1,0 := pn,K−1

5) Increment n and repeat steps 2 through 4
For notational simplicity we have dropped the arguments of
L from the above equations.

Thus the inner loop (in k) uses Newton’s method to de-
termine the best match between the measured data and the
polychromatic forward model of the data. This model requires
knowledge of c(γ, L) which is iteratively estimated in the outer
loop (in n) of the algorithm.

Note that the first iteration (in n) of the algorithm does not
require a reconstruction and the first image reconstructed has
already been partially corrected for beam hardening artifacts.

V. METHODS

We tested our algorithm on both simulated and measured
data from an Imatron electron-beam CT (EBCT) scanner.
The spectra and detector response of the measured data are
unknown; we only know that the spectra has a peak energy
of 130 keV. We modeled this spectra using the techniques
proposed in [10]. Using this spectra model and uniform
detector response, i.e., d(γ) = 1, the mean effective energy
of the system is estimated to be γ = 61.27. We partitioned
our BHC model into three components: water, aluminum, and
titanium.

To provide a basis for comparison, we also implemented a
BHC method developed by Fuchs [3]. The method is given by

p0 := − log(I/I0)

p1 := 2p0 + log

(∫
m̂(γ)e−σ̂i(γ)p0 dγ

)
gn,i := PTi(fn)

pn+1 := p0 +

M∑
i=1

gn,i

+ log

(∫
m̂(γ)e−

∑M
i=1 σ̂i(γ)gn,i dγ

)
.

The Fuchs algorithm shares some similarities with our algo-
rithm. In our algorithm, the forward model of the corrected
data essentially matches the measured data. This is not true
for the Fuchs algorithm.

A list of attenuation coefficients and effective-Z of the
materials used in our simulations is shown in Table I. The
FBP reconstruction of the phantoms used in our simulations
are shown in Figure 1. We simulated 500 views (over 180◦)
of parallel-beam data with 512 rays per view using analytic
ray-tracing techniques and a polychromatic spectra with peak
energy of 130 keV. Noise was not included in the simulation
so we could isolate the beam hardening artifact and correction.

The Imatron CT data is comprised of a single-row of fan
beam projections with 888 views (over 222◦) and 864 rays per
view. Multiple axial slices were taken in step-and-shoot mode.

TABLE I
MATERIAL PROPERTIES

material electron density Z attenuation HU
graphite 0.9012 electrons mol

cm3 6 0.3140 cm−1 1542
water 0.554 electrons mol

cm3 7.42 0.2040 cm−1 1000
magnesium 0.8610 electrons mol

cm3 12 0.4370 cm−1 2147
aluminum 1.3009 electrons mol

cm3 13 0.7290 cm−1 3581
silicon 1.1580 electrons mol

cm3 14 0.7210 cm−1 3543
titanium 2.0710 electrons mol

cm3 22 3.2820 cm−1 16121

3-Material Phantom 6-Material Phantom

Al Ti

H2O Si

AlTi

C Mg

H2O

Fig. 1. FBP Reconstructions. Window: [900 1100] HU.

VI. RESULTS

Results are shown in Figures 2, 3, 4, and 5.
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Fig. 2. Reconstructed images are the 3-material phantom. Window: [900,
1100] HU.

VII. DISCUSSION AND CONCLUSION

In this paper we have developed and tested an efficient and
accurate model-based beam hardening correction algorithm for
X-ray CT. Experiments show that the algorithm effectively
converged in five iterations, removing streaks and improving
quantification. Our algorithm seemed to converge significantly
faster than the algorithm developed by Fuchs et al. and the
image quality of our algorithm is shown to be superior for the
same number of iterations.



Fuchs Algorithm Our Method

Fig. 3. Reconstructed images of the 6-material phantom after 2 iterations of
each BHC algorithm. Window: [900, 1100] HU.

Fuchs Algorithm Our Method
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Fig. 4. Cross sectional plots through the reconstructed image of the 6-material
phantom after two iterations of each BHC method. The numbers on the cross
section plots represent the number of iterations of the BHC algorithm. The
dashed line is the true cross section.

The inner loop of the BHC algorithm (the iteration in k)
converges rapidly and can be computed in parallel because
each measurement is processed independently. In our experi-
ments nearly all data samples converged to within ten decimal
places in three iterations or less. The computational complexity
of our algorithm and the Fuchs algorithm is primarily driven
by the number of forward and backprojection operations
that are required per iteration. Our algorithm requires one
forward projection and one backprojection per iteration while
the Fuchs algorithm requires M (the number of materials in
the model) forward projections and one backprojection per
iteration. No forward or back projections are required for
the first iteration of either algorithm, but one must perform
an extra backprojection at the conclusion of both algorithms
to produce an output image. Thus the number of forward
and back projections required for N iterations is given by
2(N − 1)+ 1 and (M +1)(N − 1)+ 1 for our algorithm and
the Fuchs algorithm, respectively.

The main novel aspect of our algorithm is in the separation
of the beam hardening model parameters, c(γ, L), and the de-
sired monochromatic sinogram, p(L), described by equations
(6, 7). This allows one to exactly determine the data that fits
the given material model by computation of the inner loop in
our algorithm. The outer loop updates the material model.
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